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SUMMARY

This paper presents an adaptive finite element method for solving incompressible turbulent flows using ak–e
model of turbulence. Solutions are obtained in primitive variables using a highly accurate quadratic finite
element on unstructured grids. A projection error estimator is presented that takes into account the relative
importance of the errors in velocity, pressure and turbulence variables. The efficiency and convergence rate of
the methodology are evaluated by solving problems with known analytical solutions. The method is then applied
to turbulent flow over a backward-facing step and predictions are compared with experimental measurements.
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1. INTRODUCTION

Adaptive finite element methods provide a powerful approach for tackling complex computational
fluid dynamics problems. They can provide accurate solutions at a reasonable cost by automatically
clustering elements around flow features of interest such as shear and boundary layers and
reattachment points. The adaptive process is also cost-effective in the sense that the best numerical
solution is obtained at the least computational cost. Moreover, such approaches provide flexibility in
modelling and algorithm development. The ability of the methodology to produce uniformly accurate
solutions makes it possible to obtainnumerically exact solutions(grid-independent) to the equations
of motion, so that mathematical models of the physical phenomenon of interest can be evaluated with
confidence.

Initial breakthroughs in adaptive computation were achieved in aerodynamics because of the
pressing need for accurate computations of shock waves.1 However, little work has been done for
incompressible flows and even less for turbulent flow problems. Proof-of-concept computations for
laminar incompressible flow were reported in References 2 and 3. Adaptivity and thek e model are
discussed in Reference 4, where structured grids are adapted by both moving nodes and imbedding
finer grids in the coarser one. This approach has led to solution improvements. However, the authors
performed only one pass of adaption. In this approach the degree of solution improvement is limited
by the structured nature of the mesh and the limited number of refinements that are easily
implemented (only one step of refinement was implemented). Reference 5 presents applications of an
adaptive finite element method to compressible viscous flows with shocks. Turbulence is modelled by
a low-Reynolds-numberk e model. The adaptive remeshing procedure significantly improved the
accuracy of the predictions. However, adaptation was driven by an error estimator that is only
sensitive to velocity gradients. In many practical applications the turbulence kinetic energy, its
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dissipation and the eddy viscosity may have fronts in different locations. Figure 1 illustrates a case
where k and e are linear. They present no front. However, since the eddy viscosity is given by
mT � rCmk2

=e, it may present strong variations which are governed by the respective values of the
slopes ofk ande.

This paper proposes a practical approach which takes into account the errors in the velocity and
turbulence variables and in the eddy viscosity fields. The adaptive strategy is thus sensitive to regions
of rapid variations in all dependent variables. This constitutes an improvement over previous work.
The use of unstructured grids provides for very high localized grid resolution at a reasonable cost.
The remeshing procedure also makes it possible to achieve any preset level of accuracy. The method
can thus be viewed as a technique for generatingnumerically exactsolutions to the differential
equations modeling turbulent flow. In References 6–9 the methodology proposed by the authors was
quantitatively validated by solving laminar flows with known analytical solutions and by computing
cases for which experimental measurements were available. The methodology was further extended
to convective heat transfer flows with variable fluid properties10 and to zero-equation and two-
equation models of turbulence for free shear flows.11,12 This paper presents a rigorous extension of
the methodology to turbulent wall-bounded flows. The methodology is based on adaptive remeshing
coupled to a finite element solver for steady state incompressible turbulent flows for which turbulence
is represented by thek–e model.

The paper is organized as follows. First we describe the modelling of the problem. The equations
of motion and the finite element solver are reviewed. The turbulence model is discussed and details of
the non-linear equation solver and wall boundary conditions are presented. The methodology section
describes the error estimator and the adaptive remeshing strategy. The proposed methodology is then
validated by solving problems with known analytical solutions to clearly quantify the accuracy
improvements due to adaptivity. The method is then applied to turbulent flow over a backward-facing
step for which experimental data are available. The paper ends with conclusions.

2. MODELING OF THE PROBLEM

2.1. Reynolds-averaged Navier–Stokes equations

The flow regime of interest is modelled by the Reynolds-averaged Navier–Stokes equations

ru � Hu � ÿHp � H � ��m� mT��Hu � HuT
�� � rf ; H � u � 0; �1�

Figure 1. Eddy viscosity variation from lineark ande
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where the turbulent viscosity is computed using thek e model of turbulence as

mT � rCmk2
=e: �2�

The system is closed by including the transport equations fork and e,13

ru � Hk � H � m�

mT

sk

� �

Hk

� �

� mTP�u� ÿ re; �3�

ru � He � H � m�

mT

se

� �

He

� �

� C1
e

k
mTP�u� ÿ C2r

e2

k
; �4�

where the production of turbulence is defined as

P�u� � Hu : �Hu � HuT
�: �5�

The constantsCm; C1; C2; sk and se take on the standard values proposed by Launder and
Spalding.13

To increase the robustness of the finite element scheme, the equations fork ande are rewritten by
using the eddy viscosity definition. Hence,e may be rewritten as

e � rCmk2
=mT �6�

to achieve the following block-triangular form of the turbulence equations:

ru � Hk � H � m�

mT

sk

� �

Hk

� �

� mTP�u� ÿ r
2Cm

k2

mT
; �7�

ru � He � H � m�

mT

se

� �

He

� �

� rC1CmkP�u� ÿ C2r
e

2

k
: �8�

The equations can now be solved in the following order: momentum–continuity,k and thene.

2.2. Finite element solver

The above equations are solved in a partly segregated manner using the following algorithm:

1. given initial conditionsu0; k0 ande0

2. computemT from k ande
3. for mT given

3.1. solve momentum and continuity
3.2. solve thek-equation
3.3. solve thee-equation
3.4. updatemT and go to 3.

In this algorithm, step 3.1 corresponds to solving the Navier–Stokes equations with variable
viscosity, for which the proposed adaptive strategy has already proven successful.10,11Steps 3.1–3.3
are solved in a Gauss–Seidel fashion, each step using the most recently available values for all
variables. Note that in this form of the algorithm the only non-linearities are quadratic ones due to the
termsu � Hu; k2 ande2 which are easily treated with Newton’s method.

The finite element equations are obtained by multiplying the differential equations by suitable test
functions and applying the divergence theorem to diffusion terms. This leads to the following
Galerkin variational equations:
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momentum and continuity

�ru � Hu; v� � a�u; v� ÿ �p;H � v� � �f ; v� � ht*; vi; �q;H � u� � 0; �9�

with

�h; g� �

�

O

hg dO; a�u; v� �

�

O

�m� mT��Hu � HuT
� : Hv dO;

ht*; vi �
�

@KnGt

��m� mT��Hu � HuT
� � n̂ ÿ pn̂�v ds �

�

@K\Gt

t*v ds;
�10�

where@K nGt denotes either a freestream or outflow boundary and@K \ Gt represents the portion of
the boundary where the law of the wall will be applied;
turbulence kinetic energy(step 3.2)

�

O

ru � Hkw � m�

mT

sk

� �

Hk � Hw � r
2Cm

k2

mT
w

� �

dO �

�

O

mTP�u�w dO; �11�

turbulence dissipation(step 3.3)
�

O

ru � Hes � m�

mT

se

� �

He � Hs � rC2
e2

k
s

� �

dO �

�

O

rC1CmkP�u�s dO: �12�

These equations are solved in primitive variables using an augmented Lagrangian algorithm to treat
the incompressibility.14 The equations are discretized with the seven-node Crouzeix–Raviart
triangular element which uses an enriched quadratic velocity approximation and a linear
discontinuous pressure. A standard quadratic interpolant is used fork and e.

2.3. Wall boundary conditions

On the boundary a combination of Neumann and Dirichlet conditions is imposed by using wall
functions which describe the asymptotic behaviour of the different variables near the wall. If the
boundary mesh points are located in the logarithmic region, we may impose the wall shear stress
given by

tw � ru2
t : �13�

In equation (10) we then taket* � twsign��u � ^t�^t, where^t is a unit vector tangent to the boundary. The
friction velocity ut is evaluated by solving the equation

Ku � ut ln E
ry

m
ut

� �

; �14�

whereu is the tangential velocity,y is the distance to the wall,K is the Karman constant andE is a
roughness parameter�E � 9�0 for smooth walls). Imposing the wall shear stress corresponds to a non-
homogeneous Neumann boundary condition for the momentum equation in the tangential direction.
The normal component of the velocity is set to zero.

The turbulence kinetic energy (TKE) and its dissipation on the boundary of the mesh are given as
functions of the friction velocity:13

kw � u2
t=
p

Cm; ew � u3
t=Ky: �15�
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2.4. Stability enhancement measures

The momentum and turbulence transport equations are dominated by convection and it is well
known that a standard Galerkin discretization leads to oscillatory solutions. Hence some form of
upwinding is required to suppress these unphysical oscillations. Streamline upwinding (SU) as
described by Zienkiewicz15 is used. In this approach the test function for the convective and source
terms is modified as

Wi � Ni �
a0

jV j

2 uj
@Ni

@xj
; �16�

with

a0 � djV jh=2; �17�

d � coth�Pe� ÿ 1=Pe; �18�

whereNi are the interpolation functions,jV j is the speed of the fluid,h is the element size,Pe is the
element Peclet number defined as

Pe � rhjV j=2k �19�

and k is the diffusion coefficient of the transport equation under consideration. This form of
upwinding is applied to the momentum and turbulence equations.

The turbulence equations contain divisions byk, e andmT. Hence negative or small values of the
denominator can lead to improper sign or overly large values formT or for some source terms. To
enhance the robustness of thek e algorithm, bothk and e are limited from below to prevent them
from taking overly small values. Ifk is too small, it is replaced byk � kmax=ck , wherekmax is the
maximum value found in the domain andck is a user-supplied constant. Ife is too small and results in
overly large values ofmT, it is replaced bye � rCmk2

=dmml, wheredm is a user-supplied constant
establishing the level ofmT to dmml. Hereml is the fluid viscosity andCm is the constant in thek e

model of Launder and Spalding.13

3. ADAPTIVE METHODOLOGY

3.1. Generalities

Most adaptive methods assess the quality of an initial solution obtained on a coarse mesh by using
some form of error estimation and modify the structure of the numerical approximation in a
systematic fashion to improve the overall quality of the solution. There are several ways of achieving
adaptivity: P-methods increase the degree of polynomial approximations for improved accuracy, R-
methods relocate grid points in regions of rapid change in the solution16 and H-methods proceed by
either mesh enrichment or remeshing.1,5

A variant of an H-method called adaptive remeshing has been retained because it provides the
greatest control of element size and grading to accurately resolve flow features such as shear and
boundary layers, stagnation points, jets and wakes. In this approach the problem is first solved on a
coarse grid to roughly capture the physics of the flow. The resulting solution is then analysed to
determine where more grid points are needed and an improved mesh is generated. The problem is
solved again on the new mesh using the solution obtained on the coarser mesh as an initial guess. This
process is repeated until the required level of accuracy is achieved.
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Remeshing also offers an elegant and simple approach to overcome some of the obstacles specific
to incompressible viscous flows. For instance, the best proven finite element approximations can be
selected based on their convergence and accuracy properties.14,17 This circumvents the problem
associated with P-methods of satisfying the so-called LBB compatibility condition between the
velocity and pressure approximations. It also eliminates the ‘hanging node problem’ encountered in
some H-refinement methods.3

3.2. Error estimation

This subsection describes the projection error estimation technique used for assessing the accuracy
of the solutions obtained by the finite element solver. This error estimator was first introduced by
Zienkiewicz and Zhu18 and involves, in the case of the velocity field, postprocessing of the strain rate
tensorg � �Hu � HuT

�=2. The method is based on the observation that while the true derivatives are
continuous throughout the flow domain, the finite element derivativesgh are discontinuous across
element faces. The theory of finite element methods also states thatgh converges to its true
continuous distribution as the mesh is refined. Hence a measure of the quality of the velocity
prediction can be obtained by computing the norm ofgh ÿ gex, wheregh andgex are the finite element
and exact strain rate respectively.

Unfortunately, the exact solution is not available in practice. However, it has been shown that the
exact derivatives can be replaced by a continuous least squares approximation; see References 18 and
19 for details. Thus the velocity erroreu can be estimated by

keu
kEO �

�

O

eg : eg dO

� �1=2

�

�

O

�~gÿ gh� : �~gÿ gh� dO

� �1=2

: �20�

Here ~g is a continuous least squares projection ofgh into a space of continuous interpolation
functions.

The original global projection method obtains continuous derivatives by solving the least squares
problem

min
�

O

�gh ÿ gG�
2 dO; �21�

wheregh is the finite element strain rate tensor andgG is its least squares approximation by the global
projection method. Nodal values ofgG are obtained by using the velocity interpolation functions as
basis functions forgG:

gG �

P
fnf�gGgn; �22�

wherefn are the velocity interpolation functions andf �fGgn are the nodal values ofgG.
Minimization of the above integral leads to the variational equation

�

O

fm�gh ÿ gG� dO � 0; �23�

which in turn leads to the following symmetric positive definite system of equations for the nodal
valuesf �fGgn:

�

O

fmfn dO

� �

f�gGgn �

�

O

fmgh dO: �24�
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This approach, originally introduced by Zienkiewicz and Zhu18 was used with success by the authors
in a variety of flow problems.6–12 However, it was recently shown by Strouboulis and Haque20 that
this approach is not very robust. In same cases the error estimate obtained by computing

keu
k

2
�

�

O

�gG ÿ gh� : �gG ÿ gh� dO �25�

may not be convergent. Examples are given in Reference 20, where this approach yields a value of
zero for the error estimate, while the true error given by

keu
exk

2
�

�

O

�gex ÿ gh� : �gex ÿ gh� dO �26�

is not zero. Reference 20 shows that this improper behaviour persists in spite of mesh refinement.
Fortunately, this property occurs on a very specific class of problems: elliptic equations for which the
exact solution is a polynomial of degreek � 1 for a finite element approximation of degreek, wherek
is even. It is the case for the present finite element solver which uses quadratic interpolations for
turbulence variables.

Babuskaet al.21 have shown similar trends in more detail for the global projection method. They
also show that the local projection technique proposed by Zienkiewicz and Zhu22,23 leads to a more
robust and reliable error estimator. Moreover, the local projection technique leads to correct results
when quadratic elements are used to solve the above-mentioned specific cases where the global
method failed miserably.

The local projection method22,23 solves the least squares problem

min
�

Os

�gh ÿ gL�
2 dO; �27�

wheregL is the local projection ofgh. For each nodes of the mesh we use the following second-
degree polynomial to approximategL:

gL � Pa; �28�

where

P � �1; x; y; x2
; xy; y2

�; a � �a1; a2; a3; a4; a5; a6�
T
: �29�

Os is formed by the patch of elements connected to nodes. The values of coefficientsai are obtained
by solving the system

�

Os

PTP dO

" #

fag �

�

O

PT
gh dO

� �

: �30�

Then the values ofgL at nodes are obtained by evaluating

gL�xs; ys� � P�xs; ys�a: �31�

The error in velocity is estimated by

keu
k

2
�

�

O

�gL ÿ gh� : �gL ÿ gh� dO

�

�

O

@u

@x

� �

L

ÿ

@u

@x

� �

h

� �2

�

1
2

@u

@y
�

@v

@x

� �

L

ÿ

@u

@y
�

@v

@x

� �

h

� �2

�

@v

@y

� �

L

ÿ

@v

@y

� �

h

� �2
)

dO;

�32�
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where the continuous fieldgL is obtained from the nodal values and using the basis of quadratic
interpolation functions.

This approach is extended to compute pressure errors:

kep
k

2
�

�

O

�pL ÿ ph�
2 dO; �33�

wherepL is the continuous least squares fit toph, the finite element discontinuous pressure.

Figure 2. 2D shear layer, trajectory generated by estimator

Figure 3. 2D shear layer, histogram of elemental error
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Error estimates for turbulence quantities are obtained in a similar fashion:

kek
k

2
�

�

O

��Hk�L ÿ �Hk�h� � ��Hk�L ÿ �Hk�h� dO�

�

O

@k

@x

� �

L

ÿ

@k

@x

� �

h

� �2

�

@k

@y

� �

L

ÿ

@k

@y

� �

h

� �2
( )

dO;

�34�

keek2
�

�

O

��He�L ÿ �He�h� � ��He�L ÿ �He�h� dO �

�

O

@e

@x

� �

L

ÿ

@e

@x

� �

h

� �2

�

@e

@y

� �

L

ÿ

@e

@y

� �

h

� �2
( )

dO:

�35�

An error estimator is also constructed for the eddy viscosity, since slowly varyingk ande can result in
an eddy viscosity presenting rapid variations or fronts. The error estimator is defined as

kemT
k

2
�

�

O

��HmT�L ÿ �HmT�h� � ��HmT� ÿ �HmT�h� dO

�

�

O

@mT

@x

� �

L

ÿ

@mT

@x

� �

h

� �2

�

@mT

@y

� �

L

ÿ

@mT

@y

� �

h

� �2
( )

dO: �36�

It should be noted thatk; e andmT generally take values that are several orders of magnitude smaller
than the velocity. Hence their error estimates will be much smaller than those onu. However, bothk
ande directly afteru through their ratiomT � rCmk2

=e. Hence an accurate solution for bothk ande is
required to obtain a meaningful velocity field. To ensure that turbulence errors are of the same order
as the velocity errors, the velocity and turbulence fields are scaled to their maximum values. The total
error is then computed as

k�eu
; ep

; ek
; ee; emT

�k �

keu
k

2

u2
max

�

kep
k

2

p2
max

�

kek
k

2

k2
max

�

keek2

e2
max

�

kemT
k

2

m2
Tmax

 !1=2

: �37�

3.3. Adaptive remeshing

There remains to discuss how one exploits the knowledge of the error distribution to design a better
mesh. The adaptive remeshing strategy is straightforward and follows that proposed in Reference 1,
proceeding as follows:

1. generate an initial mesh
2. compute the finite element solution
3. compute error estimate
4. if (global error4 tolerance) then

� stop
else

� compute grid density from error estimate
� generate an improved mesh according to grid density
� interpolate current solution on new mesh

go to 2
end if.

We now provide details on some of the steps of this algorithm. Once the finite element solution has
been obtained, the error on each element is computed using one of the previously described
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Figure 4. 2D shear layer, meshes generated by adaptive procedure
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estimators. The global norms of the solution and the error are computed as

ketotk
2
�

X
kekk

2
: �38�

There remains to compute the element size for the improved mesh so that elements are smaller in
regions of large error and bigger in regions where the solution is already accurate. This is achieved by
requiring that the improved mesh be optimal (i.e that all elements have the same average erroreav).
Now, given a target reduction coefficient of the error,x, the total and average errors can be related

keavk � xketotk=
p

n: �39�

Finally, an expression for element sizes can be derived from the asymptotic rate of convergence of
the finite element approximation which relates the error on each element to some powerk (k� 2 for
the present case) of the element sizeh:

kek � chk
; �40�

which can also be written for the target elemental error as

keavk � cdk
: �41�

These two equations can be solved for the required element size:

d �

xketotk

kek
p

n

� �1=k

h: �42�

This distribution of element size is then used as the grid function in an advancing front mesh
generator1 in order to generate an improved mesh.

4. VALIDATION

The error estimators are first compared on a simple flow problem for which an analytical solution is
known. This provides controlled conditions for validating the methodology and assessing its
computational performance.

Convergence was achieved when the relative error on two successive global iterates was less than
1076. In all cases, subiterations onu; k ande were performed until the relative error and theL2 norms
of residuals were of the order of 1078. The adaptive procedure and finite element code were run in a
blackbox fashion with no intervention on the part of the user. The adaptive procedure was set to
reduce the global error by a factor of three at each cycle of adaptation.

Table I. 2D shear layer

Number of Number of Solution Error True
Mesh nodes elements norm estimate error

0 1247 594 5�578 2�492 2�684
1 2709 1326 5�442 8�120e-1 8�254e-1
2 5953 2940 5�454 3�361e-1 3�252e-1
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Figure 5. Solutions on initial and final meshes
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4.1. A 2D shear layer with linear turbulent viscosity

This is a version of the shear layer described by Schlichting24 consisting of two coflowing streams
of velocitiesu1 andu2. The solution is assumed to be

u �

u1 � u2

2
ÿ

u1 ÿ u2

2
erf

sy

x

� �
; v �

u1 ÿ u2

2
1

s
p

p
exp ÿ

sy

x

� �2
� �

;

p � 0; k � k0 ck � exp ÿ

dy

x

� �2
#" )

; e �
e0

x
ck � exp ÿ

sy

x

� �2
� �� �2

; mT � mT0
x:

(

�43�

The constants are taken to be

u1 �1�0; u2 � 0�0; s � 13�5;

k0 �

343
75000

u1�u1 ÿ u2�
s
p

p
; e0 �

343
22500

Cmu1�u1 ÿ u2�
2 s

2

p
;

mT0
�

343
250000

ru1; Rel �
ru1L

ml
� 104

:

�44�

Table I presents the performance of the projection estimator. As can be seen, both the true error
and its estimate decrease at each cycle of adaptation. The error levels obtained are comparable for the
true and estimate errors, indicating that the projection error estimator performs adequately. Figure 2
illustrates the trajectory generated by the estimator. As can be seen, the behaviour of the estimator
follows closely that of the true error.

Figure 3 is a histogram of the elemental error. It is a count of the elements having the same level of
error. In an ideal situation all elements would have the same error. In practice we obtain an
approximately Gaussian distribution. As can be seen from this figure, the error is reduced throughout
the domain at each cycle of adaptation. Furthermore, the proportion of the elements clustered near the
mean increases from one cycle to another, indicating that the meshes tend towards optimality.

Figure 4 illustrates meshes generated by the procedure. As can be seen, the adaptation strategy
proceeds by a complete reallocation of grid points, refining the mesh around the fronts ofk and near
the centre of the shear layer in the mid-section of the domain. Contour lines of the velocity,
turbulence kinetic energy, turbulence dissipation and turbulence viscosity are presented in Figure 5.
The plots on the left represent the solution obtained on the initial coarse mesh, while those on the
right present the solution on the final mesh. As can be seen, the resolution improves drastically
between the initial and the final mesh. Predictions obtained after adaptation show very good
resolution for the turbulence variables, especially for the turbulent viscosity, which must vary only in
the x-direction.

Finally, Figure 6 compared contour lines of the velocity, turbulence kinetic energy, dissipation and
turbulent viscosity errors and of the combined error evaluated on the second mesh. The plots on the
left are contours of the true errors; those on the right are contours of the error estimate. One can see
that the key features of the errors in the shear layer are reproduced by the estimator. This indicates
that the error estimator is faithful to the true error. This constitutes a significant improvement over our
previous results.12

In summary, the adaptive procedure performs well and leads to solution improvements.
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Figure 6. Contour lines of velocity, turbulence kinetic energy, dissipation and turbulent viscosity errors and of combined error

114 F. ILINCA, D. PELLETIER AND A. GARON



5. APPLICATION: FLOW OVER A BACKWARD-FACING STEP

This problem has been the subject of a detailed experimental study by Kim25 and has served as a
benchmark for turbulent flow solvers. Typical meshes generated by the adaptive strategy are shown in
Figure 7. As can be seen, the mesh is highly refined near the corner of the step, in the shear layer and
in the boundary layer on the bottom wall. The solution obtained on the final mesh is shown in Figure
8. As can be seen,k andmT present steep fronts in the shear layer and along the bottom wall, whilee

presents a peak next to the corner.
Figure 9 presents a comparison of predicted and measured streamwise velocity profiles at selected

stations. As can be seen, the agreement is good for all stations and improves with adaptivity. Table II
summarizes the results obtained for the length of the recirculation zone.

These results should be viewed as excellent in view of the large scatter of predicted values reported
by Nallasamy.26

Figure 10 presents a comparison of predicted and measured turbulence kinetic energy. It should be
noted that Kim25 provides values of�u2 and �v

2 only. Hence it is impossible to assess the exact values
of k in the experiment. Consequently, at each station the TKE is scaled by its maximum value as
reported by most authors. The agreement is good. The adaptive strategy has captured the very thin
layer and peak in the TKE profile atx=HT � 1�0. The steep front atx=HT � 2�3 is also very nicely
resolved, although measurements indicate a lower slope of the TKE profile.

Figure 11 shows distribution of the main components of the Reynolds stress tensor at selected
stations. As observed by Nallasamy,26 the k e model predicts higher values ofuv than measured in
the initial region of the shear layer and lower values than measured downstream of the reattachment
point. As can be seen, the predictions are qualitative in nature but are as accurate as the best published
results27,28obtained on a mesh of more than 48,000 points. The present predictions required less than
7000 nodes.

Figure 7. Meshes generated by adaptive procedure
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Figure 8. Solution obtained on final mesh

Table II. Length of recirculation zone

Code=experiment Length Error (%)

Experiment 7�00 —
Mesh 0 (3123 points) 5�630 20
Mesh 1 (4690 points) 6�022 14
Mesh 2 (6960 points) 6�206 11
Reference 23 (48,472 points) 5�588 20
Reference 24 (10,458 points) 5�5 21
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Figure 9. Measured and predicted streamwise velocity profiles
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Figure 10. Distribution of turbulence kinetic energy Figure 11. Distribution of Reynolds stress tensor
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6. CONCLUSIONS

An adaptive remeshing strategy has been presented for thek e model of turbulence based on a
projection technique for computing an error estimator. The estimator incorporates errors from all
sources: velocity, pressure and turbulence variables and eddy viscosity fields. The adaptive strategy
have proven reliable and convergent on non-trivial problems with analytical solutions.

For internal flow over a backward-facing step the technique leads to very good predictions. The
velocity field and length of the recirculation zone are well predicted. The predictions of the TKE are
less accurate and more sensitive to changes in the mesh. Finally, the predictions of the Reynolds
stress are even more mesh-sensitive but are in qualitative agreement with measurements. They are at
least as accurate as the best published results.
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19. J. F. He´tu, ‘Méthodes d’e´léments finis adaptives pour les e´coulements visquex incompressibles’,Ph.D. Thesis, E´cole

Polytechnique de Montre´al, 1991.
20. T. Strouboulis and K. A. Haque, ‘Recent experience with error estimation and adaptivity, part I: Review of error estimators

for scalar elliptic problems’,Comput. Method Appl. Mech. Eng., 97, 399–436 (1992).

ADAPTIVE FEM FOR TWO-EQUATION TURBULENCE MODEL 119



21. I. Babuska, T. Strouboulis and C. S. Upadhyag, ‘A model study of the quality of a posteriori error estimators for linear
elliptic problems. Error estimation in the interior of pathwise uniform grids of triangles’,Comput. Methods Appl. Mech.
Eng., 114, 307–378 (1994).

22. O. C. Zienkiewicz and J. Z. Zhu, ‘The superconvergent patch recovery and a posteriori error estimates. Part 1: The
recovery technique’,Int. j. numer. methods eng., 33, 1331–1364 (1992).

23. O. C. Zienkiewicz and J. Z. Zhu, ‘The superconvergent patch recovery and a posteriori error estimates. Part 2: Error
estimates and adaptivity’,Int. j. numer. methods eng., 33, 1365–1382 (1992).

24. H. Schlichting,Boundary Layer Theory, 7th edn, McGraw-Hill, New York, 1979, pp. 737–739.
25. J. J. Kim, ‘Investigation of separation and reattachment of turbulence shear layer: flow over a backward facing step’,Ph.D.

Thesis, Stanford University, 1978.
26. M. Nallasamy, ‘Turbulence models and their applications to the prediction of internal flows: a review’,Comput. Fluids, 15,

151–194 (1987).
27. S. Thangham and N. Hur, ‘A highly resolved numerical study of turbulent separated flow past a backward facing step’,Int.

J. Eng. Sci., 29, 607–615 (1991).
28. C. G. Speziale and N. Tuan, ‘Numerical solution of turbulent flow past a backward facing step under a non-lineark e

model’, Int. J. Eng. Sci., 26, 1099–1112 (1988).

120 F. ILINCA, D. PELLETIER AND A. GARON


